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a b s t r a c t

We apply the lattice Boltzmann equation (LBE) with multiple-relaxation-time (MRT) colli-
sion model to simulate laminar flows in two-dimensions (2D). In order to simulate flows in
an unbounded domain with the LBE method, we need to address two issues: stretched non-
uniform mesh and inflow and outflow boundary conditions. We use the interpolated grid
stretching method to address the need of non-uniform mesh. We demonstrate that various
inflow and outflow boundary conditions can be easily and consistently realized with the
MRT-LBE. The MRT-LBE with non-uniform stretched grids is first validated with a number
of test cases: the Poiseuille flow, the flow past a cylinder asymmetrically placed in a chan-
nel, and the flow past a cylinder in an unbounded domain. We use the LBE method to sim-
ulate the flow past two tandem cylinders in an unbounded domain with Re = 100. Our
results agree well with existing ones. Through this work we demonstrate the effectiveness
of the MRT-LBE method with grid stretching.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In recent years the lattice Boltzmann equation (LBE) has become a viable means for computational fluid dynamics (CFD)
(cf. [1] and references therein). As opposed to conventional CFD methods based on direct discretizations of the Navier–Stokes
equations, the LBE method is derived from the Boltzmann equation and kinetic theory [2,3]. The kinetic origin of the LBE
method differentiates it from conventional CFD methods in several ways. In the LBE method, one deals with the discretized
particle velocity distribution functions ffig instead of the hydrodynamic variables. Therefore, one must also deal with the
boundary conditions for the distribution functions ffig instead of that for the hydrodynamic variables. This kinetic nature
of boundary conditions in the LBE method has some times caused confusions and the boundary conditions in the LBE are
still a topic of active research.

The most popular LBE implementation of the Dirichlet boundary conditions on the flow velocity u or pressure p is the
bounce-back (BB) boundary conditions (BC). When the bounce-back boundary conditions are coupled with the simple lattice
Bhatnagar–Gross–Krook (BGK) collision model with one single relaxation parameter s, the exact location where the Dirichlet
boundary conditions for u or p are satisfied depends on the viscosity m (or the relaxation parameter s) [4–8]. This problem in
the lattice BGK (LBGK) equation with the bounce-back BCs has generate numerous papers (e.g. [9–15]). Unfortunately, none
of these works provides a rigorous analysis of or a systematic remedy to the problem due to inaccurate BB-BCs with the LBGK
. All rights reserved.
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model, in spite of the fact that this problem can be analyzed [4–7] and removed [16,7,8] by using the lattice Boltzmann
equation with the multiple-relaxation-time (MRT) models [17–20] and improved boundary conditions [16,7,8]. It should
also be noted that asymptotic analysis [21,22] has been used to address this problem in LBE [23].

In addition to flow-solid boundary conditions, LBE implementations of various inflow and outflow boundary conditions
have been considered. Various approaches have been proposed previously in the context of the LBGK equation [9,10,13,14].
In flow simulations, boundary conditions only specify the values of hydrodynamic variables at boundaries. However, hydro-
dynamic boundary conditions are insufficient for the lattice Boltzmann equation, because the distribution functions ffig have
non-equilibrium moments which are not specified by the values of hydrodynamic variables. Similarly, hydrodynamic initial
conditions are insufficient to completely specify the LBE initial conditions but can be solved by an iterative procedure [24]. In
this work we will demonstrate the inflow and outflow boundary conditions of either Dirichlet or Neumann type can be easily
and consistently realized with the MRT-LBE method.

The LBE method usually employs uniform Cartesian meshes in both two and three dimensions. To be computationally effi-
cient, non-uniform and adaptive meshes must be used. To this end, two approaches have been used in the LBE: the grid
refinement [15,25,26] and the interpolated grid stretching [27,2,28]. In grid refinement, Cartesian meshes are used, and grid
spacing is divided by an integer, which is usually a power of 2, to the next refined grid level. Interpolations are used at the
interface between two connected meshes of different grid spacings, and at solid boundaries [29,8]. With the interpolated grid
stretching method, one can use body-fitted meshes [30,31]. Except at flow-solid boundaries, interpolations have to be used
throughout the entire mesh where the discretized distribution functions ffig cannot be propagated exactly from one grid to
another in the advection process. The simple bounce-back boundary conditions can be used with body-fitted meshes. We
will use the latter approach, i.e., the interpolated grid stretching, in the present work.

In this paper we intend to use the LBE method to simulate laminar flows past two tandem cylinders in an unbounded
domain in two-dimensions (2D). We shall restrict ourselves to the athermal (or isothermal) LBE models, in which the inter-
nal energy is not a conserved quantity. The main objective of this work is to investigate the effectiveness of the MRT-LBE
with non-uniformly stretched grids for flow simulations. Implementations of inflow and outflow boundary conditions with
the MRT-LBE method will also be validated through a number of test cases.

The remainder of this paper is organized as follows. We discuss the LBE method in Section 2, including descriptions of
the MRT-LBE method, the interpolated bounce-back boundary conditions for arbitrary curved boundaries, inflow and out-
flow boundary conditions, force evaluation at flow-solid boundaries, and non-uniform grid stretching method. To validate
the grid stretching method and inflow and outflow boundary conditions, we provide a number of test cases in Section 3.
These test cases include: the Poiseuille flow, the flow past a cylinder asymmetrically placed in a channel at the Reynolds
number Re = 20 and 100 [32], and the flow past a cylinder in an unbounded domain. In Section 4 we present the LBE re-
sults for the flow past two tandem cylinders in an unbounded domain with Re = 100 [33–40]. We will compare our results
with existing ones obtained with conventional Navier–Stokes solvers [33,37,38]. Finally we conclude the paper with Sec-
tion 5.

2. Numerical method

2.1. Multiple-relaxation-time lattice Boltzmann method

We will use the lattice Boltzmann equation with the multiple-relaxation-time (MRT) collision model [17,18,20],
fðxj þ cdt; tn þ dtÞ ¼ fðxj; tnÞ �M�1 � Ŝ � ½m�mðeqÞðq;uÞ�ðxj; tnÞ; ð1Þ
where q and u are the macroscopic density and velocity, respectively, the boldface symbols such as f denote Q-tuple vectors,
and Q is the number of discrete velocities:
f :¼ ðf0; f1; . . . ; fQ�1ÞT;

fðxj þ cdtÞ :¼ ðf0ðxjÞ; f1ðxj þ c1dtÞ; . . . ; fQ�1ðxj þ cQ�1dtÞÞT;

m :¼ ðm0;m1; . . . ;mQ�1ÞT;

mðeqÞ :¼ ðmðeqÞ
0 ;mðeqÞ

1 ; . . . ;mðeqÞ
Q�1Þ

T
;

where T denotes the transpose operator.
We will use the nine velocity model (D2Q9 model), of which the discrete velocities are: c0 ¼ ð0;0Þ, ci ¼ ð�1; 0Þc and

ð0;�1Þc, for i = 1–4, and ci ¼ ð�1;�1Þc, for i = 5–8, where c :¼ dx=dt , and dx and dt are the lattice constant (or grid spacing)
and time step size, respectively [2,3,18].

With the following specific order of the moments [18]:
m :¼ ðq; e; �;ux; qx;uy; qy;pxx;pxyÞ
T
;

where q is the fluid density (zeroth-order velocity moment), u the velocity (first-order moments), pxx and pxy are the stresses
(second-order moment) and q is related to the heat flux (third-order moments), the transform matrix M is given by [18]
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M ¼

1 1 1 1 1 1 1 1 1

�4 �1 �1 �1 �1 2 2 2 2

4 �2 �2 �2 �2 1 1 1 1

0 1 0 �1 0 1 �1 �1 1

0 �2 0 2 0 1 �1 �1 1

0 0 1 0 �1 1 1 �1 �1

0 0 �2 0 2 1 1 �1 �1

0 1 �1 1 �1 0 0 0 0

0 0 0 0 0 1 �1 1 �1

0BBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCA

: ð2Þ
The matrix M maps the distribution functions to its moments:
m ¼ M � f; f ¼ M�1 �m: ð3Þ
The labeling of the discrete velocity set fcig is uniquely defined by the rows 4 and 6 in M corresponding to cix and ciy, respec-
tively. For the construction of M and detailed description of the moments, we refer readers to the work by d’Humières et al.
[18,20].

The diagonal matrix Ŝ of relaxation rates fsig is given by
Ŝ ¼ diagð0; s2; s3;0; s5;0; s7; s8; s9Þ; ð4Þ
where the relaxation rates s8 ¼ s9 ¼ sm ¼ 1=s determines the dimensionless viscosity of the model:
m ¼ 1
3

s� 1
2

� �
cdx; ð5Þ
where c :¼ dx=dt . Since the parameter s is dimensionless, then the physical viscosity is proportional to a scaling factor,
depending on the adopted grid size and time step (diffusion scaling is assumed). Other relaxation rates s2, s3 and
s5 ¼ s7 ¼ sq are usually determined by linear stability of the model [18]. In addition, the no-slip boundary conditions will also
determine the choice of s5 ¼ s7 [7,8].

In Eq. (1), the equilibria for the non-conserved moments for the D2Q9 model are
eðeqÞ ¼ �2dqþ 3j � j; eðeqÞ ¼ dq� 3j � j; ð6aÞ
qðeqÞ

x ¼ �jx; qðeqÞ
y ¼ �jy; ð6bÞ

pðeqÞ
xx ¼ j2

x � j2
y ; pðeqÞ

xy ¼ jxjy; ð6cÞ
where dq is the density fluctuation, q ¼ �qþ dq and �q ¼ 1, j :¼ ðjx; jyÞ ¼ ð�qux; �quyÞ ¼ ðux;uyÞ is the flow momentum. Here the
approximation for incompressible flows has been used [41], i.e., the coupling between the density fluctuation dq and the flow
velocity u is neglected in m(eq). Note that the equilibria of the conserved moments (q and j :¼ qu) are equal to the conserved
moments themselves. The above equilibria m(eq) are equivalent to the following equilibrium distribution functions:
f ðeqÞ
i ¼ wi dqþ ðci � uÞ

RT
þ 1

2
ðci � uÞ2

ðRTÞ2
� u � u

RT

" #( )
; ð7Þ
where T is the temperature of the flow (assumed constant), R is the specific gas constant and RT represents the internal en-
ergy of the fluid, which is a constant for isothermal flows considered here. In the LBE model we use here, RT ¼ c2=3 [2,3,18].
For the D2Q9 model, the coefficients w0 ¼ 4=9, wi ¼ 1=9 for kcik ¼ 1, i = 1–4, and wi ¼ 1=36 for kcik ¼

ffiffiffi
2
p

, i = 5–8.

2.2. No-slip boundary conditions for curved boundaries

We will use the interpolated bounce-back (IBB) boundary conditions (BCs) to model the no-slip fluid–solid boundary con-
ditions with curved boundaries [29]. The bounce-back boundary conditions are based on the intuitive picture that a particle
reverses its momentum when colliding with a solid wall at the rest. If the wall is moving with a certain velocity uw, a particle
colliding with the wall should also gain additional momentum from the wall. Based on this intuitive picture, as illustrated in
Fig. 1, if the wall is located one-half grid spacing beyond the last node rA in flow domain, then a particle with velocity c1 at
node rA and time tn collides with the wall at rw, reverses its momentum, and returns to rA. Therefore, when the boundary
location is not precisely located at dx=2 beyond the last flow node, interpolations or other means must be used to reconstruct
the distribution functions at the desirable nodes in flow domain.

The flow nodes adjacent to a solid boundary have links connecting these nodes to their neighboring solid or boundary
nodes beyond the flow domain. These links intersect with the boundary so that part of them lie inside the flow domain



Fig. 1. Illustration of the bounce-back (BB) boundary conditions (BCs). (a) q = 1/2, the ‘‘perfect” BB-BCs without interpolation. (b) q < 1/2, the BB-BCs with
interpolations before the collision with the wall located at rw. (c) q P 1=2, the BB-BCs with interpolations after the collision with the wall.

986 A. Mussa et al. / Journal of Computational Physics 228 (2009) 983–999
and part of them are outside, as illustrated by the link between rA and rs in Fig. 1. Define the parameter q as the fraction of a
link between a flow node and a boundary node which lies in flow domain as
q :¼ krA � rwk
krA � rsk

; ð8Þ
as depicted in Fig. 1, then one has to treat the following two scenarios separately:

� when q < 1
2, fiðrDÞ can be constructed from the fi’s in the nearby nodes before the bounce-back collision, so that f�ıðrAÞ is

obtained after the bounce-back collision with the wall located at rw;
� when q P 1

2, f�ıðr AÞ is obtained with f�ıðrDÞ after the bounce-back collision and f�ı at other nearby nodes;

where c�ı :¼ �ci is assumed to be the bounced back particle velocity.
To reconstruct the distribution functions f�ıðrAÞ entering the flow domain from boundary nodes, we can use either the lin-

ear interpolations:
f�ıðrA; tnþ1Þ ¼ ð1� 2qÞfiðrA; tnþ1Þ þ 2qf �i ðrA; tnÞ; q < 1=2; ð9aÞ

f�ıðrA; tnþ1Þ ¼
ð2q� 1Þ

2q
f ��ı ðrA; tnÞ þ

1
2q

f �i ðrA; tnÞ; q P 1=2; ð9bÞ
or the quadratic interpolations:
f�ıðrA; tn þ dtÞ ¼ qð1þ 2qÞf �i ðrA; tnÞ þ ð1� 4q2Þf �i ðrA � cidt; tnÞ þ qð2q� 1Þf �i ðrA � 2cidt ; tnÞ; 0 < q < 1=2; ð10aÞ

f�ıðrA; tn þ dtÞ ¼
1

qð1þ 2qÞ f
�
i ðrA; tnÞ þ

ð2q� 1Þ
q

f ��ı ðrA; tnÞ þ
ð1� 2qÞ
ð1þ 2qÞ f

�
�ı ðrA � cidt; tnÞ; 1=2 6 q < 1; ð10bÞ
where f �i denotes the post-collision distribution function. It must be stressed that q = 0 and q = 1 are singular cases. When
q = 1/2, both the linear and quadratic interpolated bounce-back boundary conditions reduce to the original bounce-back
boundary conditions:
f�ıðrA; tnþ1Þ ¼ f �i ðrA; tnÞ:
While the bounce-back boundary conditions are the most often used, they are also misunderstood or misinterpreted very
often. By no means the intuitive picture illustrated in Fig. 1 should be taken literally. The precise location where the no-slip
boundary conditions are satisfied is model dependent. For the incompressible Poiseuille flow with its boundaries parallel to a
lattice axis, it can be shown analytically that the no-slip boundary location is precisely one-half lattice spacing beyond the
last flow node if and only if the following relation is satisfied [5,7]:
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sq ¼ 8
ð2� smÞ
ð8� smÞ

; ð11Þ
where sm ¼ s8 ¼ s9 ¼ 1=s is the relaxation rate for pxx and pxy which also determines the shear viscosity m given by Eq. (5) and
sq ¼ s5 ¼ s7 is the relaxation rate for q ¼ ðqx; qyÞ. Obviously, such a relationship cannot be satisfied by the lattice BGK equa-
tion with the single-relaxation-time collision model, therefore the no-slip boundary location depends on the relaxation
parameter s in lattice BGK models [7,42,8].

2.3. Inflow and outflow boundary conditions

The inflow and outflow boundary conditions used in the LBE simulations are either the Dirichlet or Neumann types for the
hydrodynamic variables p (or q) and u. In an athermal LBE model of Q velocities in d dimensions, we have (d + 1) conserved
variables, i.e., q and qu, among all Q moments. The hydrodynamic boundary conditions for q and qu do not specify the
boundary conditions for the remaining ðQ � d� 1Þ non-conserved or kinetic moments, which are important in the LBE.
We will discuss how to consistently treat these kinetic moments in the boundary conditions.

The Dirichlet boundary conditions for either velocity u or pressure p can be realized by the procedures described bellow.
Assume a 2D computational domain is covered by a rectangular uniform mesh without stretching, with nodes labeled by
index (i, j), i 2 f1;2; . . . ;Nxg and j 2 f1;2; . . . ;Nyg, and the streamwise direction is along the x-axis. As an example, we will
use the inlet velocity boundary conditions at the left of the mesh to illustrate the proposed boundary conditions. The velocity
uði ¼ 1; jÞ ¼ uinðjÞ is imposed at the inlet i ¼ 1. While the velocity uði ¼ 1; jÞ ¼ uinðjÞ at i = 1 remained intact, all other mo-
ments are copied from the line i = 2 adjacent to the inlet. These moments are then transformed to the distribution functions
fði ¼ 1; jÞ, which are used as the boundary conditions at the inlet. Thus the velocity boundary condition at the inlet i = 1 can
be written as
fði ¼ 1; jÞ ¼ M�1 �m�ði ¼ 2; jÞju¼uin
; ð12Þ
where m* denotes the post-collision moments. Similarly, the pressure boundary condition pði ¼ 1; jÞ ¼ pinðjÞ can be realized
as
fði ¼ 1; jÞ ¼ M�1 �m�ði ¼ 2; jÞjq¼qin
; ð13Þ
where qin ¼ pin=c2
s . In the proposed boundary conditions described above, all the non-equilibrium moments are generated in

the flow domain through the evolution process consistent with the flow, only the hydrodynamic variables, either u orq, relevant
to specific boundary conditions are imposed at the boundary. Therefore, as the flow develops, non-equilibrium (non-conserved)
moments and the equilibrium moments which are not imposed by the given boundary conditions at the boundary are expected
to consistently evolve according to flow dynamics. In the proposed boundary conditions, no complicated interpolations or
extrapolations are needed. For simulations in this work, we usually use the velocity boundary conditions at the inlet, and the
constant pressure boundary condition at the outlet:
qout ¼ constant:
We will compare the proposed boundary conditions described above with the non-equilibrium bounce-back boundary con-
ditions [14], in which the velocity boundary conditions uði ¼ 1; jÞ ¼ u inðjÞ at the inlet are realized as
f�kði ¼ 1; jÞ ¼ fkði ¼ 2; jÞ � f ðeqÞ
k ði ¼ 2; jÞ þ f ðeqÞ

�k
ði ¼ 2; jÞju¼uinðjÞ ¼ fkði ¼ 2; jÞ � 3wkck � ½uði ¼ 2; jÞ þ uinðjÞ�; ð14Þ
where f�k is the distribution function corresponding to the discrete velocity c�k, and c�k :¼ �ck is an incoming discrete particle
velocity with respect to the boundary at i = 1, i.e., those velocities with positive x component ðc�kx > 0Þ hence ff�kði ¼ 1; jÞg are
the incoming distribution functions. In the above derivation, we have assumed the incompressible LBE model [41] with the
equilibria of Eq. (7). Similarly, when the pressure boundary condition pði ¼ 1; jÞ ¼ pinðjÞ is imposed at the entrance, or equiv-
alently qði ¼ 1; jÞ ¼ qinðjÞ through q ¼ p=c2

s , the non-equilibrium bounce-back boundary conditions are
f�kði ¼ 1; jÞ ¼ fkði ¼ 2; jÞ �wk½qði ¼ 2; jÞ � qinðjÞ� � 6wkck � uði ¼ 2; jÞ: ð15Þ
Another way of implementing a constant pressure p ¼ pout ðq ¼ qout ¼ pout=c2
s Þ at the outlet i ¼ Nx is to impose equilibrium

distributions:
fkði ¼ Nx; jÞ ¼ f ðeqÞ
k ðq ¼ qout;u ¼ uði ¼ Nx � 1; jÞÞ: ð16Þ
With the MRT-LBE, the inflow and outflow boundary conditions discussed above are particularly easy to implement. After
advection and collision, the moments at i = 2 are copy to i = 1, then either the velocity u or the density q are reset according
to given boundary conditions, while the rest of the moments are remained intact. The moments fmig are transformed back to
the distribution functions ffig, which carry the information imposed by the boundary conditions to flow domain. This differs
from the approach that sets the distribution functions ffig to their equilibria ff ðeqÞ

i g with the specified values of hydrody-
namic variables at the boundaries [9] or that uses extrapolations to obtain non-equilibrium distribution functions [10,13].
The proposed approach will be tested numerically in Section 3.1.
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2.4. Force evaluation at flow-solid boundaries

Two methods to compute hydrodynamic forces on a flow-solid boundary in the lattice Boltzmann simulations are used.
The first method is to compute the pressure and stresses at the flow-solid boundary and then to integrate the forces over the
entire boundary. For arbitrary curved boundaries, the hydrodynamic forces at boundary can be obtained by interpolating
either the pressure and velocity fields from flow nodes to boundary locations [30,31,43–45], or the distribution functions
to compute the local stresses.

The second method is the momentum exchange algorithm [46,43] which is only applicable to the LBE method. The
momentum exchange algorithm is directly related to the bounce-back boundary conditions: for a particle distribution func-
tion f �i ðrA; tnÞ at a flow node rA adjacent to a boundary node rs is bounced back as f�ıðrA; tnþ1Þ after colliding with the wall, as
illustrated in Fig. 1. Consequently the hydrodynamic force dF due to this flow–wall interaction is
dFðrw; tnþ1=2Þ ¼ ½f�ıðrA; tnþ1Þ þ f �i ðrA; tnÞ�ci;
where ci points from a flow node to a boundary node. For a body of volume X and boundary @X, let BðrkÞ be the set of the
flow notes frkg next to @X which have at least one link ci intersecting with @X. The total hydrodynamic force on the body is
simply given by
F ¼
X
rk2B

X
ci\@V–0

½f�ıðrb; tnþ1Þ þ f �i ðrb; tnÞ�ci: ð17Þ
The momentum exchange algorithm is simple to implement, its accuracy and efficiency have been validated previously
[46,43,47]. Therefore it is the method to be used in this work.

2.5. Grid stretching and interpolated LBE

The lattice Boltzmann equation usually employs a uniform Cartesian mesh with the grid spacing dx. To use non-uniform
mesh, one can use either local grid refinement [15,25,26] or grid stretching [27,2,28] and the latter approach is used in this
work. The fundamental difference between the grid refinement and grid stretching methods is the following. In the grid
refinement, the grid spacing dx and the time step size dt are refined consistently, hence the viscosity m must be rescaled
accordingly to maintain the Reynolds and Mach numbers fixed throughout the system [15,25,26], interpolations are used
to compute data only at the interface between two meshes of different grid spacing dt . In the grid stretching approach,
the time step size dt remains the same regardless of the grid spacing Dx, and dx is the grid spacing with which the advection
process can transfer data from one grid node to its neighboring ones. In this approach, one can use an arbitrary non-uniform
mesh with the finest grid spacing Dx ¼ dx. For the nodes with Dx > dx, interpolations must be used to compute the values of
ffig on these grid nodes after advection. Because dt and dx remain the same in the grid stretching approach, the viscosity re-
mains intact throughout the system.

In this work we will use a very simple grid stretching strategy for a two-dimensional Cartesian mesh. Surrounding a rect-
angular uniform fine mesh with grid spacing dx, the grid spacings are stretched exponentially along both x and y directions
beyond the four boundaries of the fine mesh, as illustrated in Fig. 2. The stretched grids are given by
Dxk :¼ xk � x0 ¼ dx expðDxk�1=DÞ; ð18aÞ
Dyk :¼ yk � y0 ¼ dx expðDyk�1=DÞ; ð18bÞ
Fig. 2. Illustration of stretched mesh. The shaded part is the fine mesh of the grid space dx ¼ 1.



Fig. 3. Illustration of stretched mesh in one dimension. The grid spacing between two adjacent disks is Dx ¼ dx ¼ 1, and that between two circles or a circle
and a disk is Dx > dx ¼ 1. For nodes indicated by circles, interpolations are necessary to compute the data ffig after advection.
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where D is a characteristic length, index k is only used for the stretched grids, and x0 and y0 are the coordinates of the bound-
aries of the fine mesh from which the grid spacings are stretched, and dx ¼ 1 ¼ Dx0.

With non-uniform Cartesian meshes, interpolations must be used in order to obtain the values of the distribution func-
tions ffig, because advection transfers the data off the grid nodes. In the grid stretching approach, we apply interpolations
after the collision step to compute the values of ffig on a grid node from the nearby off-grid values of ffig, as illustrated
in Fig. 3. The advection moves ffig from one grid node to the next when Dx ¼ dx ¼ 1, as indicated by the disks in Fig. 3. How-
ever, when Dx > dx ¼ 1, as indicated by the circles in Fig. 3, the advection moves ffig to off-grid locations. Therefore inter-
polations must be used to reconstruct ffig on the grid nodes indicated by circles. For those fi’s moving along lattice lines,
i.e., along x- and y-axis, we use second-order interpolations involving three points along a grid line. For those fi’s moving
along diagonal directions, we apply second-order interpolations in both x- and y-direction, which involve nine points
[27,28,47–49].

Clearly, interpolations introduce numerical dissipation. However, so long as the interpolations are second or higher order,
they do not affect the formal order of accuracy [27,28]. Although interpolations can introduce severe dissipation in small
scales [50], they can be judicially used to enhance computational efficiency without degrading numerical results
[27,28,47–49].

3. Validation of the numerical method

In this section we validate our proposed approach to realize Dirichlet boundary conditions and non-uniform mesh with
stretched grids. All the validations are carried out in two-dimensional flows. We first compare our proposed boundary con-
ditions with the non-equilibrium bounce-back scheme for the Poiseuille flow and the results are presented in Section 3.1.
Our second validation test for the boundary conditions is the flow past a cylinder asymmetrically placed in a channel with
the Reynolds number Re = 20 and 100, corresponding to steady and unsteady flow, respectively. A uniform mesh is used for
these flows and the results are given in Section 3.2. Our last validation test is the flow past a cylinder in an unbounded do-
main with Re = 100. In this case the non-uniform mesh with stretched grids has to be used. The results are presented in Sec-
tion 3.3.

3.1. Poiseuille flow

To validate of the inflow/outflow boundary conditions implemented with the MRT-LBE, we consider first the steady
Poiseuille flow in two-dimensions [51], for which the incompressible Navier–Stokes equation admits an analytic solution
for the streamwise velocity u(y). In our simulations, the streamwise direction is along the x-axis and the spanwise direction
is along the y-axis. The computational domain is ðx; yÞ 2 ½0; L� � ½0;H� ¼ X, where L and H are channel length and height,
respectively. With constant pressure p0 and p1 imposed at the inlet and outlet, respectively, the pressure p and the stream-
wise velocity u(y) have the following solutions:
pðxÞ ¼ p0 �
ðp0 � p1Þx

L
;

uðyÞ ¼ Umax 1� 2y
H

� �2
" #

; �H
2
6 y 6

H
2
;

ð19Þ
where the maximum streamwise velocity along the channel center line is a constant:
Umax ¼
H2ðp0 � p1Þ

8Lqm
: ð20Þ
For near incompressible flow, we can assume q = 1 in Umax.
To validate the consistency of the proposed boundary conditions, we impose a parabolic velocity profile corresponding to

p0 at the inlet x/L = 0 and constant pressure boundary condition at the outlet x/L = 1, as given in Eqs. (12) and (13), respec-
tively. At the walls, bounce-back boundary conditions are applied. The system size used in our test is Nx � Ny ¼ 20� 21. The
initial velocity field is set to be zero every where. The values of the relaxation rates are: s2 ¼ 1:63, s3 ¼ 1:14,
sq ¼ s5 ¼ s7 ¼ 1:92 and sm ¼ s8 ¼ s9 ¼ 1=s. These values of s2, s3 and s5 ¼ s7 will be used throughout this study unless other-
wise stated. We vary the values of s and p1 in such a way that Umax ¼ 0:1c is fixed in our test. The value of sm ¼ 1=s used in
our test are: 1.0, 1.3, 1.6, 1.85, 1.9, 1.95, 1.98 and 1.99, i.e., m 2 ½8:375� 10�4;1=6�. We compare our proposed boundary con-
ditions of Eqs. (12) and (13) with the non-equilibrium bounce-back (NEQ-BB) boundary conditions at the inlet and the equi-
librium boundary conditions at the outlet, given by Eqs. (14) and (16), respectively.
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When the system reaches steady state, attained after about 3,000 iterations for the smallest viscosity m 	 8:375� 10�4,
we measure the velocity along the channel center and the result is shown in Fig. 4(a). Clearly, the proposed boundary con-
ditions are more accurate than the non-equilibrium bounce-back boundary conditions: the velocity Umax obtained with the
proposed boundary conditions varies at the 10�6 digit, while that obtained with the NEQ-BB boundary conditions is three
order of magnitude larger, it varies at the 10�3 digit.

We next quantify the error in the measured viscosity m* in the same tests with a fixed inflow velocity profile of Umax ¼ 0:1c
and varying s and p1 simultaneously to keep the flow profile intact. We measure the relative error in m:
Fig. 4.
channe
dm ¼ jm
� � mj
m

; ð21Þ
where m is computed from Eq. (20), and m� is measured from the numerical simulations with varying s and p1. The results for
dm are shown in Fig. 4(b). In the range of the relaxation rate sm ¼ 1=s 2 ½1;1:99�, the error in m in the simulations with the
NEQ-BB boundary conditions is much larger than that with the proposed boundary conditions, and the difference is partic-
ularly apparent when s is close to 1/2. This simple test clear shows the advantages of the proposed boundary conditions.

3.2. Flow past a cylinder in a channel

Our second test case to validate our code is the flow past a cylinder asymmetrically placed in channel in 2D [32]. This flow
has been used as a benchmark test [32], thus we can compare our results with existing data. The flow configuration is illus-
trated in Fig. 5. We use an uniform mesh of size Nx � Ny for the simulations presented in this section. At the inlet, a parabolic
velocity profile with maximum velocity Umax is imposed. At the outlet, a constant pressure boundary condition correspond-
ing to q1 ¼ 1 is used. At the channel walls, the bounce-back boundary conditions are applied. At the cylinder boundary, we
use the bounce-back, the first-order and second-order interpolated bounce-back boundary conditions [16,8]. The Reynolds
number is defined by the average inflow velocity U ¼ 2Umax=3 and the cylinder diameter D, i.e., Re ¼ UD=m ¼ 2UmaxD=3m.

At Re = 20, the flow is steady and a recirculation bubble is formed behind the cylinder. The quantities measured are the
drag coefficient CD, the lift coefficient CL, the recirculation bubble length Lr , and D�p, the pressure difference between the front
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2D Poiseuille flow with different implementations of the inflow and out boundary conditions. (a) The normalized streamwise velocity along the
l center Uc/Umax, with a fixed s = 1/1.85. (b) The s-dependence of the maximum relative error dm given by Eq. (21) for 1=s ¼ sm 2 ½1;1:99�.

Fig. 5. The geometric configuration for the flow past a cylinder asymmetrically placed in the channel.



Table 1
Flow past a cylinder asymmetrically placed in a channel at Re = 20. The mesh-size dependence of the drag coefficient CD , the lift coefficient CL and the length of
the recirculating zone Lr=D. BB, I and II denote the bounce-back, and the first-order and second-order interpolated bounce-back boundary conditions. The
results of Ref. [32] are also included.

D=dx 10 20 30 40 80 NS [32]

CD BB 6.171 5.816 5.755 5.6855 5.6108 5.5700–5.5900
I 5.6627 5.5741 5.5631 5.5600 5.5591
II 5.6306 5.5621 5.5574 5.5573 5.5584

CL BB 0.0354 0.0223 0.0186 0.0164 0.0129 0.0104–0.0110
I 0.0158 0.0123 0.0117 0.0115 0.0113
II 0.0170 0.0134 0.0125 0.0116 0.0113

Lr=D BB 0.8953 0.8619 0.8629 0.8531 0.8480 0.8420–0.8520
I 0.7696 0.8237 0.8322 0.8358 0.8402
II 0.7728 0.8259 0.8344 0.8371 0.8402

D�p BB 6.1549 5.7454 5.7500 5.7856 5.8132 5.8600–5.8800
I 5.6975 5.8305 5.7636 5.7823 5.8132
II 5.7947 5.8470 5.7762 5.7836 5.8091

Fig. 6. The vorticity contours for the flow past a cylinder asymmetrically placed in the channel at Re = 20, with the resolution D=dx ¼ 80.
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and the back of the cylinder normalized by q1U2=2. We use a number of meshes with different resolutions in terms of D=dx

and our results are summarized in Table 1.
Fig. 6 shows the contours of the vorticity x at the inlet and outlet sections of the channel. The maximum value of jxj is

slightly larger than 1.0 within a very thin layer around the cylinder. Away from the cylinder, the vorticity is rather weak. At
the four corners of the channel, the magnitude of x, jxj, is less than 2:0� 10�3 at both inlet and outlet, indicating that the
proposed inlet/outlet boundary conditions do not generate spurious effects near the corners.

Fig. 7 shows the pressure coefficient Cp around the cylinder:
CpðhÞ ¼
pðhÞ � p1
1
2 q1U2

max

; ð22Þ
where q1 ¼ 1, p1 ¼ 1=3, Umax ¼ 0:1c, and h = 0� is the stagnation point in front of the cylinder. In order to compute the pres-
sure coefficient Cp, the pressure p(h) at the cylinder surface is extrapolated from mesh points in the flow domain. With the
resolution D=dx ¼ 40, CpðhÞ computed with the bounce-back boundary conditions around the cylinder shows considerable
oscillations, while the results obtained with the first- and second-order interpolations are much smoother, as expected.
We also note that the results obtained by the first-order and second-order interpolations are very close to each other, i.e.,
the second-order interpolations do not significantly improve the result of CpðhÞ.

At Re = 100, the flow becomes unsteady and a periodic vortex shedding takes place. Consequently both the drag and lift
coefficients are periodic functions in time. We measure the Strouhal number St, the maximum drag coefficient Cmax

D and the
maximum lift coefficient Cmax

L with different grid resolutions indicated by D=dx. Our results are summarized in Table 2.
It is worth noting that BB boundary conditions produce a very good result for Cmax

L at D=dx ¼ 10. This is not systematic: in
fact, BB shows only a first-order error convergence for D=dx > 10, while I and II interpolations show better trends. In a
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Fig. 7. Flow past a cylinder asymmetrically placed in a channel at Re = 20. The pressure coefficient CpðhÞ around the cylinder surface is computed with three
different boundary conditions. The resolution is D=dx ¼ 40. h = 0� is the stagnation point in front of cylinder.

Table 2
Flow past a cylinder asymmetrically placed in a channel at Re = 100. The mesh-size dependence of the Strouhal number St, the maximum drag coefficient Cmax

D

and the maximum lift coefficient Cmax
L . BB, I and II denote the bounce-back, first-order interpolation and second-order interpolation boundary conditions,

respectively.

D=dx 10 20 40 80 NS [32]

St BB 0.2778 0.2930 0.2972 0.2979 0.2950–0.3050
I 0.2947 0.2991 0.2993 0.2995
II 0.2953 0.3000 0.2993 0.2995

Cmax
D BB 3.951 3.329 3.241 3.266 3.2200–3.2400

I 3.250 3.205 3.235 3.253
II 3.200 3.198 3.250 3.256

Cmax
L BB 0.974 0.844 0.922 1.007 0.9900–1.0100

I 0.566 0.913 1.006 1.030
II 0.601 0.939 1.031 1.033

Fig. 8. Computational domain for the flow past a cylinder in unbounded domain. The shaded area around the cylinder is the fine mesh (without grid
stretching).
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convergence study, it may happen that the target function shows some strange behavior with rough meshes, before repro-
ducing the expected convergence behavior, once the numerical error are small enough to respect the asymptotic analysis.

3.3. 2D Flow past a cylinder in an unbounded domain at Re = 100

The test case we use to validate the grid stretching method is the 2D flow past a cylinder in unbounded domain. The flow
configuration is illustrated in Fig. 8. We use a computational domain of size L � H. The periodic boundary conditions are
applied in the lateral direction y. At the inlet, a constant velocity U is imposed. At the outlet, a constant pressure correspond-
ing to �q ¼ 1 is applied. To minimize effect due to the blockage ratio D/H between the cylinder diameter D and the domain
height H on the flow [52,53], we use D/H = 1/51. To minimize the effect from outlet boundary conditions, we use L = 38.5D.



Table 3
2D Flow past a cylinder in unbounded domain at Re = 100. The dependence of the Strouhal number St, the mean drag coefficient CD and the RMS lift coefficienteCL on the size of fine mesh in downstream direction (nD) and in the lateral direction ((2m + 1)D). Beyond the fine mesh, the grid spacings are stretched
according to Eq. (18). The results obtained by the LBE with a uniform fine mesh for the entire domain (LBE) and by a unstructured-grid finite volume Navier–
Stokes solver (NS) [38] are also given in the table.

The height of fine mesh = 3D LBE NS [38]

n 1 2 4 8 16

St 0.147 0.154 0.156 0.159 0.159 0.161 0.164
CD 1.1713 1.3099 1.3142 1.3241 1.3243 1.355 1.33eCL 5:5 � 10�5 0.249 0.181 0.186 0.188 0.191 0.23

The length of fine mesh = (4 + 1 + 8)D

m 1 2 4 8 16

St 0.1587 0.1587 0.1590 0.1587 0.1587 0.161 0.164
CD 1.3221 1.3224 1.3223 1.3227 1.3232 1.355 1.33eCL 0.1841 0.1848 0.1847 0.1853 0.1863 0.191 0.23
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The cylinder center is located in the middle of the computational domain in y-direction, and 13D away from the inlet bound-
ary. With a domain size of L� H ¼ 38:5D� 51D, non-uniform mesh would greatly enhance the computational efficiency.

We test the following meshes in our simulations. First, we use a fine mesh with a height of 3D and width of (4 + 1 + n) D,
of which 4D portion is located upstream to the cylinder front, and nD portion is downstream to the cylinder back, as illus-
trated by the shaded area around the cylinder in Fig. 8. Outside the fine mesh, grid spacing is stretched exponentially in both
directions according to Eq. (18), with D as the cylinder diameter. We vary the downstream fraction of the fine mesh by vary-
ing n to observe the effect due to the fine mesh size in streamwise direction. Similarly, we will also fix the fine mesh length at
(4 + 1 + 8) D, and vary the height of the fine mesh (2m + 1) D. All the measurements are made after 100,000 iterations to en-
sure that the system has reached the periodic state.

The results of the Strouhal number St, the mean drag coefficient CD and the root-mean-square (RMS) lift coefficient eCL are
summarized in Table 3, which shows the fine-mesh size dependence of St, CD and eCL by varying the fine-mesh length in
downstream direction the height in lateral direction. The resolution for the fine mesh is D=dx ¼ 40. Beyond the fine mesh,
the grid spacings are stretched according to Eq. (18). We also include the results obtained by the LBE with a uniform fine
mesh for the entire domain (LBE) and by a unstructured-grid finite volume Navier–Stokes solver (NS) [38] in Table 3. The
grid number covered by the uniform fine mesh is ð38:5� 40Þ � ð51� 40Þ ¼ 1540� 2040 	 3:1� 106.

The results of Table 3 clearly show the effect of the size of the fine mesh about the cylinder. Clearly the effect of the fine
mesh size diminishes as the fine mesh size enlarges. The results obtained with stretched grids agree well with that obtained
with the uniform fine mesh, so long as the size of the fine mesh covering the cylinder is sufficiently large, e.g., ð4þ 1þ 8Þ
D� 5D ¼ 520� 200. However, if the size of the fine mesh is not large enough, e.g., ð4þ 1þ 1ÞD� 5D ¼ 520� 200 for
n = 1, the result of eC L obtained with this mesh is rather inaccurate, as shown in Table 3. This indicates that one must provide
sufficient grid resolution behind the cylinder where vortex shedding takes place. With the fine mesh size fixed at
ð4þ 1þ 8ÞD� 5D ¼ 520� 200 for n = 8, the grid number of the entire mesh with non-uniformly stretched grids is about
0:5� 106, which is only about 1/16 of the mesh size of the uniform fine grid. Therefore, the grid stretching method can sig-
nificantly enhance computational efficiency. Compared to the results obtained by the Navier–Stokes solver [38], the largest
difference occurs in the RMS lift coefficient eCL, about 17%. Our results also show that the LBE method is second-order accu-
rate [49].
4. Flows past two tandem cylinders at Re = 100

Our code is written in C++ with a open-source version of the Message Passing Interface library (MPICH). The numerical
simulations presented in this work were carried out on cluster computers available to us at the Department of Computer
Science, Old Dominion University (ODU) and Politecnico di Torino.

4.1. Computational domain, mesh and boundary conditions

The computational domain for flows past two tandem cylinders of equal diameter D is a rectangle of size
L� H ¼ ð13:5þ sþ 25:5ÞD� 47D, where s is the dimensionless spacing between two cylinder centers in terms of D. The dis-
tance between the inlet boundary to the first cylinder center is 13.5D, and that between the outlet boundary to the second
cylinder center is 25.5D. The cylinders are situated at the centerline of the domain, as illustrated in Fig. 9. A rectangular area
of size ð4:5þ sþ 8:5ÞD� 5D including both cylinders is covered by a uniform fine mesh, as indicated by the shade rectangle
in Fig. 9. The distance between the front boundary of the fine mesh to the first cylinder center is 4.5D, and that between the
back boundary of the fine mesh to the second cylinder center is 8.5D. The fine mesh has a height of 5D and it is placed



Fig. 9. Schematics of computational domain for the flow past two tandem cylinders. The shaded area of size (4.5 + s + 8.5)D � 5D is covered a uniform fine
mesh. The grid stretching is applied to the area outside the fine mesh.

Fig. 10. Non-uniform mesh for the flow past two tandem cylinders with s = 4. The finest resolution for the mesh covering both cylinders is D=dx ¼ 40.
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symmetrically in lateral direction about the domain centerline. The resolution we use is D=dx ¼ 40. A mesh with s = 4 is de-
picted in Fig. 10.

The streamwise direction is along the x-axis. The boundary conditions are the same as for the flow past a cylinder in
an unbounded domain, i.e., a constant velocity U is enforced at the inlet, a constant pressure condition corresponding to
q = 1 is applied at the outlet, and periodic boundary conditions are applied at the boundaries in the y-direction. Around
the cylinders, second-order interpolated bounce-back boundary conditions are used to achieve no-slip boundary
conditions.

The Reynolds number of the flow is based on the inlet velocity U and the cylinder diameter D:
Re ¼ UD
m
: ð23Þ
In our simulations, the Reynolds number is fixed at Re = 100. We measure the Strouhal number,
St ¼ fsD
U
; ð24Þ
where fs is the vortex shedding frequency; and the drag and lift coefficients,
CD ¼
FD

1
2 qU2 ; CL ¼

FL

1
2 qU2 ; ð25Þ
where FD and FL are drag and lift forces, respectively, and q = 1 in our calculations. We study the dependence of St, CD and CL

on s, the dimensionless spacing between two cylinders.
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4.2. Effect of Mach number

The LB method is an intrinsically compressible method applied to solve incompressible Navier–Stokes equation, somewhat
similar to the method of artificial compressibility [54]. The compressibility, characterized by the Mach number Ma, affects
numerical results obtained by using the LBE method, as noted in previous studies [55]. To quantify the effect due to finite
Mach number, we conduct a study of Mach number dependence of the drag coefficient CD for the flow past tandem cylinders
at Re = 100.

In what follows, we will use the resolution D=dx ¼ 40 and s = 4, as described in the previous section. The initial conditions
are quiescent velocity field u0 = 0 and a constant density field q0 = 1. The measurements are taken after an initial dimension-
less run time t00 ¼ NtU=D ¼ 500, where Nt is the number of time steps. We vary the inlet speed U and measure the Mach
number dependence of the period T0, the mean value CD and the oscillating amplitude DCD of the drag coefficient for both
cylinders. We use U = 0.1c, 0.05c and 0.025c. The results are summarized in Table 4.

Based on the results of the oscillating period T0 and the mean drag coefficient CD in Table 4, we can see that the errors in
both T0 and CD have approximately a linear dependence on the Mach number Ma. If Richardson extrapolation is applied, we
can estimate the asymptotic values of T0 and CD in the limit of Ma! 0 to be 3.59000 and 1.20834, respectively. For U = 0.1c,
0.05c and 0.025c, the errors of CD compared to its estimated asymptotic value 1.20834 are about 7.4%, 5.7%, and 3.8%, respec-
tively. That is, the computational time is quadrupled as U is reduced by a factor of four, while the error is only reduced by
about half. The results of the oscillating amplitude of CD, DCD, are much less accurate than T0 and CD, because it is a much
smaller quantity compared to CD. Balancing the computational efficiency and accuracy of the results, we will use U = 0.1c
for our simulations.

4.3. Results and discussion

The initial velocity field is zero every where, and the density field is initialized as q = 1 throughout the system. There
would be pressure waves generated by initial conditions in the system. In order to avoid the influence of pressure waves
caused by unphysical initial conditions, over 2� 105 iterations are carried out before any measurements are taken in our
simulations. With U = 0.1c and D ¼ 40dx, Nt ¼ 200;000 time steps are equivalent to a dimensionless time
t0 ¼ NtU=D ¼ 500, which is more than 10 turn-over time corresponding to the largest domain with s = 10. We ensure that
the flow field reaches a periodic state before taking measurements [49], and compare our results with the existing ones
[33,37,38].

We investigate the dependence of the flow characteristics on the normalized spacing s between two cylinders, for
2 6 s 6 10, at Re = 100. With Re = 100, the flow is expected to be laminar and periodic [33–38] and two-dimensional [51].
The second cylinder has a synchronization effect on the flow: vortices are shed with the same frequency from both cylinders,
the lift forces on both cylinders are in phase, while the drag forces are in anti-phase. As a consequence, the Strouhal number
is the same for both cylinders and it characterizes the fluctuation frequency of the flow.

We first show in Fig. 11 the dependence of the Strouhal number St on the dimensionless spacing s between two cylinders.
Our LBE results are compared with that of Li et al. [33], Sharman et al. [38] and Mizushima and Suehiro [37]. Our results are
in very good agreement with the existing ones obtained with various Navier–Stokes solvers [33,38,37]. The Strouhal number
St in Fig. 11 shows a sharp transition somewhere in 3:0 < s < 4:0, which is the most important feature of these flow. The
transition of St has been predicted previously [35]. The LBE result indicates that the transition occurs between
3:25 < s < 3:5, while the results of Sharman et al. [38] shows the transition happens when 3:75 < s < 4:0. This discrepancy
is due to the multiplicity of stable solutions in this region, as recently shown by Mizushima and Suehiro [37]. The result of
Mizushima and Suehiro [37] shows a hysteresis of s-dependence of St, as shown in Fig. 11. As s continues to increase, the
value of St increases asymptotically to the value St 	 0:163 for an isolated cylinder in an unbounded domain.

The sharp transition in the Strouhal number St as s varies is due to an instability caused by the flow detached from the
first cylinder then interacting with the second one. For small cylinder spacing s, the flow separated from the first cylinder re-
attaches on the downstream cylinder and vortexes are shed only from the latter. As the spacing s between two cylinders
increases beyond certain critical value sc , vortexes are shed from both cylinders, thus two perfectly synchronized vortex
streets are created in the wake region, as oppose to one vortex street when s < sc. In Fig. 12 we show the streamlines and
vorticity field for the flows with s = 2 and 4. Qualitatively, the two tandem cylinders with s = 2 behave like a single body,
there is only one vortex street generated. When s = 4, there are clearly two vortex streets generated in the flow.
Table 4
The Mach-number dependence of the drag coefficient for the flow past two tandem cylinders at Re = 100 and s = 4. The grid resolution is D=dx ¼ 40 and the
mesh is described in Section 4.1. The results are measured after an initial run time t00 :¼ NtU=D ¼ 500, where Nt is the number of time steps. The oscillating
period of CD , T0 , is given in the unit of U/D.

U/c Ma Nt m s8 ¼ s9 T0 CD DCD

0.100 0.1732 200,000 0.04 1.61290 3.36500 1.29770 0.03758
0.050 0.0866 400,000 0.02 1.78571 3.37250 1.27718 0.02526
0.025 0.0433 800,000 0.01 1.88679 3.42875 1.25484 0.02194
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Fig. 11. Flow past two tandem cylinders at Re = 100. The dependence of the Strouhal number St on the dimensionless spacing s between two cylinders. The
LBE results are compared with that of Li et al. [33], Sharman et al. [38] and Mizushima and Suehiro [37]. The dash-dot line indicates the value of St 	 0:164
for a single cylinder in an unbounded domain at Re = 100.

Fig. 12. Flow past two tandem cylinders at Re = 100 with s = 2 (top row) and s = 4 (bottom row). Instantaneous flow fields: streamlines (left column) and
vorticity contours (right column).
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Fig. 13. Flow past two tandem cylinders at Re = 100. The dependence of the mean drag coefficient CD on the dimensionless spacing s between two cylinders.
(a) CD for the upstream cylinder. The dash-dot line indicates the value of CD ¼ 1:33 for a single cylinder in an unbounded domain at Re = 100. (b) CD for the
down-stream cylinder.
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Fig. 13 shows the mean drag coefficient CD for both cylinders as functions of the spacing s between two cylinders. The
mean drag coefficient CD for the upstream cylinder is larger than that for the downstream one for 2 6 s 6 10. When
s > sc , the value of CD for the first cylinder increases gradually to CD 	 1:33 for an isolated cylinder in an unbounded domain;
when s = 10, it is very close to 1.33. For the second cylinder, the value of CD is much smaller than that of the first, indicating
that the suction force due to the first cylinder is rather strong. When s < sc , CD for the first cylinder is much smaller than the
single-cylinder value CD 	 1:33, and CD for the second cylinder is even negative, due to strong suction force induced by the
first cylinder. Again, a sharp transition in CD occurs at s ¼ sc .

Figs. 14 and 15 show the root-mean-square (RMS) values of the drag and lift coefficients, eCD and eCL, respectively, com-
pared with the results of Sharman et al. [38]. The values of eCD and eCL all show a sharp increase at s ¼ sc . When s < sc , both eCD

and eCL for the first cylinder are considerably smaller than their corresponding values for a single cylinder in an unbounded
domain. Soon after the transition occurs, both eCD and eCL exceed their corresponding values for a single cylinder and reach
their maxima at s 	 4:0, then gradually decrease to their respective single-cylinder values. Both eCD and eCL for the second
cylinder behave very similar to that for the first one, i.e., they both encounter a drastic increase at s ¼ sc , reach their maxima
at s 	 4:0, then gradually decrease to their respective asymptotic values, which should presumably be that for a single cyl-
inder in an unbounded domain as s!1.

Our results shown in Figs. 11, 13–15 quantitatively agree well with the existing results [33,37,38]. All the global flow
features are quantitatively captured by the LBE simulations. We also notice that there are discrepancies between our results
and the ones obtained by various Navier–Stokes solvers [37,38]. Compared to the results of Mizushima and Suehiro [37], our
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Fig. 14. Flow past two tandem cylinders at Re = 100. The dependence of the RMS drag coefficient eCD on the dimensionless spacing s between two cylinders.
(a) eCD for the upstream cylinder. The dash-dot line indicates the value of eCD 	 0:0063 for a single cylinder in an unbounded domain. (b) eC D for the down-
stream cylinder.
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Fig. 15. Flow past two tandem cylinders at Re = 100. The dependence of the RMS lift coefficient eC L on the dimensionless spacing s between two cylinders.
(a) eCL for the upstream cylinder. The dash-dot line indicates the value of eC L 	 0:23 for a single cylinder in an unbounded domain. (b) eCL for the down-
stream cylinder.
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results agree better with that of Sharman et al. [38]. Besides the fundamental difference in the solution techniques, we note
that body-fitted meshes were used by Sharman et al. [38], and the Cartesian meshes are used in the present work. Also, the
discrepancy between our results and that of Sharman et al. [38] may be due to the multiplicity of the solutions near the crit-
ical spacing sc , as indicated in Figs. 11 and 13.

5. Conclusions

In this paper we use the lattice Boltzmann equation with multiple-relaxation-time collision model to simulate laminar
flows in two dimensions. For the no-slip boundary conditions at flow-solid boundaries, we apply the interpolated
bounce-back boundary conditions [29,8]. For the inflow and outflow boundary conditions, we use a general bounce-back
boundary conditions which can be easily, naturally and consistently realized with the MRT-LBE in particular. To enhance
the computational efficiency of the LBE method with uniform meshes, we use the grid stretching method to deal with the
non-uniform Cartesian mesh. Even though the techniques we use in this work are simple and thus easy to implement,
the numerical results demonstrate their effectiveness.

The MRT-LBE with non-uniformly stretched Cartesian mesh has been validated by using a number of test cases, including
the Poiseuille flow, the flow past a cylinder asymmetrically placed in a channel, and the flow past a cylinder in an unbounded
domain. The validated code is used to simulate flows past two tandem cylinders in an unbounded domain at Re = 100 with
the dimensionless spacing between the cylinders 2 6 s 6 10. Our results agree well quantitatively with the existing ones ob-
tained by using the Navier–Stokes solvers.
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